I have varying levels of familiarity with Google’s original leveldb and three of its derivatives. RocksDB is one of the three. In each of the four leveldb offerings, the code is optimized for a given environment. Google’s leveldb is optimized for a cell phone, which has much more limited resources than a server. RocksDB is optimized for flash arrays on a large servers (per various Rocksdb wiki pages). Note that a flash array is a device of much higher throughput than a SATA or SSD drive or array. It is a device that sits on the processor’s bus. RocksDB’s performance benchmark page details a..
Estimated reading time: 5 minutes
In this post, we will introduce you to our new ArangoDB C++ diver fuerte. fuerte allows you to communicate via HTTP and VST with ArangoDB instances. You will learn how to create collections, insert documents, retrieve documents, write AQL Queries and how to use the asynchronous API of the driver.
Requirements (Running the sample)
Please download and inspect the sample described in this post. The sample consists of a C++ – Example Source Code – File and a CMakeLists.txt. You need to install the fuerte diver, which can be found on github, into your system before compiling the sample. Please..
Estimated reading time: 1 minutes
It is all about improving replication. ArangoDB 3.3 comes with two new exciting features: data-center to data-center replication for clusters and a much improved active-passive mode for single-servers. ArangoDB 3.3 focuses on replications and improvements in this area and provides a much better user-experience when setting up a resilient single-servers with automatic failover.
Estimated reading time: 5 minutes
InfoCamere is the IT company of the Italian Chambers of Commerce. By devising and developing up-to-date and innovative IT solutions and services, it connects the Chambers of Commerce and their databases through a network that is also accessible to the public via the Internet. Thanks to InfoCamere, businesses, Public Authorities, trade associations, professional bodies and simple citizens – both in Italy and abroad – can easily access updated and official information and economic data on all businesses registered and operating in Italy.
The Italian Chambers of Commerce are public bodies..
Estimated reading time: 14 minutes
So you measured and tuned your system like described in the Part I and Part II of these blog post series. Now you want to get some figures how many end users your system will be able to serve. Therefore you define “scenarios” which will be typical for what your users do. One such a user scenario could i.e. be:
Estimated reading time: 3 minutes
We’re pleased to announce the availability of the Milestone 2 of ArangoDB 3.3. There are a number of improvements, please consult the changelog for a complete overview of changes.
This milestone release contains our new and improved data replication engine. The replication engine is at the core of every distributed ArangoDB setup: whether it is a typical master/slave setup between multiple single servers or a full-fledged cluster. During the last month we:
- redesigned the replication protocol to be more reliable
- refactored and modernized the internal infrastructure to better support..
Estimated reading time: 6 minutes
Every company needs a disaster recovery plan for all important systems. This is true from small units like single processes running in some container to the largest distributed architectures. For databases in particular this usually involves a mixture of fault-tolerance, redundancy, regular backups and emergency plans. The larger a data store, the more difficult is it to come up with a good strategy.
Estimated reading time: 7 minutes
Please note that this tutorial is valid for the ArangoDB 3.3 milestone 1 version of DC to DC replication!
Interested in trying out ArangoDB? Fire up your cluster in just a few clicks with ArangoDB ArangoGraph: the Cloud Service for ArangoDB. Start your free 14-day trial here
This milestone release contains data-center to data-center replication as an enterprise feature. This is a preview of the upcoming 3.3 release and is not considered production-ready.
In order to prepare for a major disaster, you can setup a backup data center that will take over operations if the primary data center goes..
Estimated reading time: 4 minutes
Currently, querying ArangoDB with GraphQL requires building a GraphQL.js schema. This is tedious and the resulting JavaScript schema file can be long and bulky. Here we will demonstrate a short proof of concept that reduces the user related part to only defining the GraphQL IDL file and simple AQL queries.
The Apollo GraphQL project built a library that takes a GraphQL IDL and resolver functions to build a GraphQL.js schema. Resolve functions are called by GraphQL to get the actual data from the database. I modified the library in the way that before the resolvers are added, I read the IDL..
Estimated reading time: 3 minutes
Following the previous blog post on performance analysis with pyArango, where we had a look at graphing using statsd for simple queries, we will now dig deeper into inspecting transactions. At first, we split the initialization code and the test code.
Get the latest tutorials,
blog posts and news:
