ArangoDB 3.12 Product Release Announcement! Read the blog for details. Read Blog

Vector-5

Upcoming ArangoDB 3.7 and Storage Engines

Estimated reading time: 4 minutes

Estimated reading time: 4 minutes

TL;DR

ArangoDB has supported two storage engines for a while: RocksDB and MMFiles. While ArangoDB started out with just the MMFiles storage engine in its early days, RocksDB became the default storage engine in the 3.4 release. Due to its drawbacks ArangoDB 3.6 deprecated the old MMFiles storage engine and with the upcoming 3.7 release we plan to fully remove support. This blog post will provide the background of why storage engines matter, why we chose to deprecate the MMFiles storage engine, and what you should be aware of when migrating from MMFiles to..

(more…)

Great improvements for the RocksDB Storage Engine in ArangoDB 3.4

Estimated reading time: 2 minutes

With ArangoDB 3.4 we finally made the RocksDB storage engine the default. This decision was made after a year of constant improvements to the engine to make it suitable for all our customer’s use cases.

Improved Read / Write-Performance

We massively improved the binary on-disk storage format with the 3.4 release. This format allows inserting new documents in an order that RocksDB prefers. Using the new format will reduce the number of compactions that RocksDB needs to do for the ArangoDB documents stored, allowing for better long-term insertion performance. The sustained insertion performance..

(more…)

ArangoDB 3.4 GA Full-text Search, GeoJSON, Streaming & More

Estimated reading time: 7 minutes

The ability to see your data from various perspectives is the idea of a multi-model database. Having the freedom to combine these perspectives into a single query is the idea behind native multi-model in ArangoDB. Extending this freedom is the main thought behind the release of ArangoDB 3.4.

We’re always excited to put a new version of ArangoDB out there, but this time it’s something special. This new release includes two huge features: a C++ based full-text search and ranking engine called ArangoSearch; and largely extended capabilities for geospatial queries by integrating Google™ S2..

(more…)

Speeding Up Dump & Restore

Estimated reading time: 4 minutes

Many ArangoDB users rely on our `arangodump` and `arangorestore` tools as an integral part of their backup and recovery procedures. As such, we want to make the use of these tools, especially `arangodump`, as fast as possible. We’ve been working hard toward this goal in preparation for the upcoming 3.4 release.

We’ve made a number of low-level server-side changes to significantly reduce overhead and improve throughput. Additionally, we’ve put some work into rewriting much of the code for the client tools to allow dumping and restoring collections in parallel, using a number of worker threads..

(more…)

Index types and how indexes are used in ArangoDB: Part II

Estimated reading time: 9 minutes

In the first part of this article we dived deep into what indexes are currently available in ArangoDB (3.2 and 3.3), also briefly looking at what improvements are coming with ArangoDB 3.4. Read Part I here.

In this Part II, we are going to focus on how to actually add indexes to a data model and speed up specific queries.

Adding indexes to the data model

The goal of adding an extra index to the data model is to speed up a certain query or even multiple queries.

One of the first things that should be done during development of AQL queries should be to review the output of the explain command...

(more…)

How We Wronged Neo4j & PostgreSQL: Update of ArangoDB Benchmark 2018

Estimated reading time: 5 minutes

Recently, we published the latest findings of our Performance Benchmark 2018 including Neo4j, PostgGreSQL, MongoDB, OrientDB and, of course, ArangoDB. We tested bread & butter tasks in a client/server setup for all databases like single read/write and aggregation, but also things like shortest path queries which are a speciality for graph databases. Our goal was and is to demonstrate that a native multi-model database like ArangoDB can at least compete with the leading single model databases on their home turf.

(more…)

Index types and how indexes are used in ArangoDB: Part I

Estimated reading time: 10 minutes

As in other database systems, indexes can be used in ArangoDB to speed up data retrieval queries, sometimes by many orders of magnitude. Getting the indexes set up the right way is essential for good query performance, so this is an important topic that affects most ArangoDB installations.

(more…)

NoSQL Performance Benchmark 2018 – MongoDB, PostgreSQL, OrientDB, Neo4j and ArangoDB

Estimated reading time: 21 minutes

ArangoDB, as a native multi-model database, competes with many single-model storage technologies. When we started the ArangoDB project, one of the key design goals was and still is to at least be competitive with the leading single-model vendors on their home turf. Only then does a native multi-model database make sense. To prove that we are meeting our goals and are competitive, we run and publish occasionally an update to the benchmark series. This time we included MongoDB, PostgreSQL (tabular & JSONB), OrientDB and Neo4j.In this post we will cover the following topics:

(more…)

Performance Impact of Meltdown and Spectre V1 Patches on ArangoDB

Estimated reading time: 4 minutes

To investigate the impact of the Meltdown and Spectre patches on the performance of ArangoDB, we ran benchmark tests with the two storage engines available in ArangoDB (MMFiles & RocksDB). We used the arangobench benchmark and test tool for these tests.

The tests include 10 different test cases with changing test parameters like concurrency, batch requests and asynchronous execution.

(more…)

RocksDB smoothing for ArangoDB customers

Estimated reading time: 4 minutes

I have varying levels of familiarity with Google’s original leveldb and three of its derivatives. RocksDB is one of the three. In each of the four leveldb offerings, the code is optimized for a given environment. Google’s leveldb is optimized for a cell phone, which has much more limited resources than a server. RocksDB is optimized for flash arrays on a large servers (per various Rocksdb wiki pages). Note that a flash array is a device of much higher throughput than a SATA or SSD drive or array. It is a device that sits on the processor’s bus. RocksDB’s performance benchmark page details a..

(more…)
«
1 2
»